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A turbulent flow over a curved hill. 
Part 2. Effects of streamline curvature and 

streamwise pressure gradient 
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(Received 7 February 1990 and in revised form 8 April 1991) 

The changes in turbulence in a flow over a two-dimensional curved hill, described in 
Part 1 (Baskaran, Smits & Joubert 1987), are analysed in the light of transport 
equations for the turbulent kinetic energy, @, and the primary shear stress, -m, in 
order to infer the way in which the extra strain rates due to streamline curvature and 
the streamwise pressure gradient contribute to the changes. Interaction between the 
two extra strain rates is also considered. The triple correlation data presented here 
are consistent with the fact already established in Part 1 that the upwind boundary- 
layer structure bifurcates to form two distinct turbulent zones over the hill, namely, 
an internal boundary layer and an external free turbulent flow. The source terms in 
the transport equations imply that the effects of streamline curvature and streamwise 
pressure gradient are felt differently on z and -UU. The present experimental results 
show that the shear stress is more sensitive to streamline curvature than is the 
turbulent kinetic energy. The anisotropy parameter, u2/v2, plays a major role in 
determining the difference in the behaviour of z and -m under the influence of 
streamline curvature. The distribution of turbulent lengthscales follows the general 
formulae suggested by Bradshaw (1969) for streamline curvature of either sign. The 
pressure-strain redistribution term deduced from the experimental data is in good 
agreement with the model of Zeman & Jensen (1987) for flows over hills. The 
influence of streamwise pressure gradient enters through the normal stress produc- 
tion terms, which appears only in the transport equation for p. The transport terms 
are found to be affected by streamline curvature. To the thin shear layer 
approximation, the interaction between streamline curvature and streamwise 
pressure gradient appears to be weak. 

_ _  

1. Introduction 
The present paper is a part of a long-term study on the behaviour of turbulent 

boundary layers under the influence of longitudinal streamline curvature and 
streamwise pressure gradient, and specifically it is a sequel to the study reported by 
Baskaran, Smits & Joubert (1987) (hereinafter referred to as BSJl) on a turbulent 
flow over a curved hill. The flow suffered successive changes in pressure gradient and 
streamline curvature, both alternating in sign : the pressure gradient changed from 
adverse to favourable and to adverse, and the curvature changed from flat to 
concave and then to convex. The flow over the convex surface eventually separated. 
In  BSJ1, it was demonstrated that an internal boundary layer developed over the 

t Aeronautical Research laboratory, DSTO Salisbury, Australia. 
$ Department of Mechanical and Aerospace Engineering, Princeton University, NJ 08544, USA. 
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FIQURE 1.  The turbulent flow over the curved hill. 

convex surface. This internal layer grew much like a sub-boundary layer beneath a 
free external layer, and as it developed i t  established its own wall (inner) and wake 
(outer) regions, as depicted in figure 1.  Some of the results presented in BSJl 
indicated that a bifurcation? occurred in the boundary-layer structure near the 
corner curvature (concave to convex), and the subsequent development of the 
internal and external layers seemed to take place virtually independently. The 
perturbation responsible for triggering the internal boundary layer was shown to be 
the step change in wall curvature rather than the step change in streamwise pressure 
gradient that occurs at the middle of the concave bend (adverse to favourable). The 
mean vorticity and total pressure at  the wall necessarily change under both types of 
perturbation (Morton 1984), and the changes near the corner curvature are not 
consistent with that expected of a streamwise pressure gradient. For example, the 
turbulent normal stresses were found to change all across the layer rather than 
simply in the inner region of the boundary layer. In BSJ1, it was also shown that the 
effect of step change in wall curvature was different from that due to streamline 
curvature, and the need to distinguish the two effects was stressed, especially in 
strongly curved flows. The present paper deals with the latter effect (streamline 
curvature) on the various regions on the curved hill, namely the concave bend 
(including the exit region where the streamline curvature is inflexional), and the 
internal and external layers. The effect of streamwise pressure gradient on these 
regions is also considered alongside streamline curvature in order to infer any 
possible interaction between the two effects. 

The behaviour of turbulent flows under the influence of longitudinal streamline 
curvature has been the subject of intensive experimental research especially over the 
past two decades, with the common aim of improving turbulence modelling 
algorithms. Most of the earlier experiments and calculation methods on curved 
turbulent flows were reviewed by Gillis & Johnston (1983), who studied the response 
of turbulent boundary layers to the introduction and removal of convex curvature 
for two cases of So/R = 0.05 and 0.1 $ (So is the boundary-layer thickness a t  the start 
of curvature and R is the radius of curvature of the surface). They reported the 
formation of two regions over the convex region, namely a slowly developing ‘active 
shear stress layer’ and an isolated region above the shear stress layer, which merely 
conveyed the ‘debris’ of the upstream boundary layer. Turbulence in the isolated 

t We mean by bifurcation, formation of two distinct turbulent zones over the hill. The 
behaviour of normal stresses at the exit region (figure 14 of BSJI) of the hill imply a change in the 
species of large-scale structure. 

$ As shown in BSJ1, So/R does not genuinely represent the effect of streamline curvature, 
whenever the wall curvature perturbation parameter, Ak*( = vAk/U, ), exceeds certain threshold 
limit. Here we use SO/R merely to refer to earlier experiments as ‘mild ”and ‘strong ’ cases following 
convention. 
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region was shown to be ‘isotropic’. The main effect of convex curvature was found 
t o  be a reduction in the turbulence lengthscales. 

A similar study by Prabhu & Sundarasiva Rao (1981) used 6,/R, namely 0.038, 
0.068 and 0.144. Both concave and convex curvature were investigated. In the 
convex case, the results indicated a decoupling of the inner (n/6 < 0.2) and outer 
regions of the boundary layer, and the shear stress over the curved region was found 
to be insensitive to variations in S,/R. Taylor-Gortler roll cells were detected over 
the concave surface for all cases investigated. Measurements in a turbulent boundary 
layer over a convex surface with a much smaller value of S,/R (0.01) were reported 
by Gibson, Verriopoulos & Vlachos (1984) and Gibson & Verriopoulos (1984), who 
studied aspects of both momentum transfer and heat transfer. The turbulent stresses 
and the triple velocity correlations were found to  decrease under the influence of 
convex curvature, and the Reynolds heat flux was found to be more sensitive than the 
Reynolds shear stress to changes in wall curvature. In related experiments by Muck, 
Hoffmann & Bradshaw (1985) and Hoffmann, Muck & Bradshaw (1985), measure- 
ments over convex and concave surfaces were made using the same ratio of S,/R 
as in the experiments of Gibson et al. The response of the turbulent boundary layer 
to convex and concave curvature was found to be totally different even qualitatively, 
with convex curvature affecting the structure faster than the concave curvature. For 
example, the response to the introduction of convex curvature was found to be less 
than 56, (Gillis & Johnston 1983), while in the concave case of Barlow & Johnston 
(1988), the response was found to be more than 106,. The general behaviour under 
mild conditions (with small 6,/R) was found to be grossly different from that under 
strong conditions, and in BSJ1, we attempted to explain this observation by using 
the concept of internal boundary layers and the perturbation caused by a step 
change in wall curvature. 

The experiments on the effect of streamline curvature on free turbulent flows such 
as mixing layers, jets and wakes are few in number in comparison with that on 
boundary layers. Measurements in a curved mixing layer were reported by Castro & 
Bradshaw (1976), where a fully developed plane mixing layer experienced the effects 
of stabilizing curvature before relaxing back to the plane conditions. The Reynolds 
stresses, after an initial decrease in the curved region owing to the stabilizing effect, 
were found to overshoot the plane-layer values before recovering to their original 
levels. Koyama (1983) made measurements in a developing curved wake of a circular 
cylinder, and Savill (1983) studied the structure of a curved circular cylinder wake 
turning through 90”. The Reynolds stresses were suppressed completely on the stable 
side by the time the wake had turned through 20’ and the structure on the unstable 
side expanded onto the stable side. Nakayama (1987) reported measurements in a 
self-preserving small defect wake from a circular cylinder which experienced the 
effects of both streamline curvature and streamwise pressure gradients. The extra 
strain rates overwhelmed the basic shear, and as a consequence even the ‘fairly thin- 
shear-layer’ approximation was violated. [A shear layer in which the ratio of the 
extra strain rate to the basic shear satisfies the inequality, e/(aU/an) < 0.1, but need 
not satisfy the ‘ thin-shear-layer or boundary-layer approximation inequality ’, 
e/(aU/an) -+ 1, is classified as a ‘fairly thin shear layer’ (Bradshaw 1973).] The ratios 
of the extra strain rate to basic shear due to pressure gradient were about 0.2, while 
those due to streamline curvature attained values as large as -0.5. Owing to this, 
the interaction between the two extra strain rates could not be inferred clearly. More 
recently, Ramjee, Tulapurkara & Rajasekar (1988) made measurements in a curved 
wake downstream o f  a symmetric airfoil and found an asymmetric mean velocity 
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distribution across the wake. Turbulence was found to be amplified on the unstable 
side, while it was suppressed on the stable side. 

The relation between the present case and meteorological hill flows was discussed 
in BSJl,  where the results were compared with the theoretical predictions of Jackson 
& Hunt (1975). The theory qualitatively reproduced the changes observed in the 
inner region where the perturbations due to pressure gradients were strong, even 
though the limitations set by the theory were severely violated. For example, the 
slenderness ratio (height/length) of the present hill was much larger than the 
Gaussian hill assumed in theory and the ratio of the inner region of the upwind 
boundary layer to the height of the hill was much smaller. In  addition, the effect of 
streamline curvature on the hill flow behaviour was altogether neglected in the 
theory. More recently, Zeman & Jensen (1987) successfully modelled the turbulent 
flow behaviour over a Gaussian hill, but found that streamline curvature played a 
major role outside the inner region. The terms in the transport equations for the 
turbulent kinetic energy and the shear stress were modelled individually. In 
particular, the curvature contribution to the pressure-strain redistribution term was 
introduced in their model explicitly, apart from the usual rapid distortion and 
return- to-isotropy contributions. Since the changes (decrease of all Reynolds 
stresses) in the outer region of the internal boundary layer were consistent with that 
expected of convex streamline curvature (figure 29 of BSJl),  we have compared this 
model with the present results. Except for the concave bend, surprisingly good 
agreement is found. 

2. Effects of streamline curvature and streamwise pressure gradient 
The results to be presented in this paper are discussed in theQht of the transport 

equations for the turbulent kinetic energy, @, where ?(=u2+2+G), and the 
primary shear stress, -ZV, as these equations are widely used as the basis in the 
development of many engineering calculation methods. The transport equations for 
these two quantities in a curvilinear coordinate system (figure 1 )  are (Bradshaw 
1973; Castro & Bradshaw 1976). 

au v u-+ 1+- v- (@)=-m 1 + -  - - ( u 2 - w 2 )  -+- ( i)E - - [ a s  R] [ :s ( i) aanl 
\ ., -- 

advection shear production normal stress production 

-m --- -- - + g u  -- 1+- -+pi -8, (1) [E 1 l s ( 7  -) :n[( :)(: )] -- - dw 
curvature production pressure cum turbulent diffusion dissipation 

[u;+(l+;)v+)=w2 -( 1+- ;)ti -+u2 -(;: --- p 2 - a ,  R 
% - --- 

mean transport shear generation curvature coordinate rotation 
generation 

+ - 8 P T  (- + u .) +; [ (1 +;) (7 + G)] + (F) --. (2) 
a5 P 

% - +- 

pressure cum turbulent transport pressure-strain redistribution 
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We have chosen the (8 ,  n, z )  curvilinear coordinate system fixed to the surface (figure 
1) for analysis because the measurements were made in accordance with this system. 
The system is also preferable for the calculation of the flow with geometry such as 
the present one. Here, we retain all the terms that arise owing to both streamline 
curvature and coordinate transformation from the Cartesian (x, y, z )  coordinate 
system. 

The terms in both equations have been given their usual names, except that the 
production and generation terms have been split into three separate parts to help 
identify their origin. The extra strain rates due to streamline curvature and 
streamwise pressure gradient in the present coordinate system are [(aV/as) - ( U / R ) ]  
and - [(aU/as) + (V/R)]  respectively. Note that the pseudogeneration term in (2), 
(u2-G) ( U / R ) ,  represents the contribution due to the rotation of axes, and hence is 
not due to streamline curvature. This term is usually small since streamlines cannot 
change direction abruptly, even though it tends to reduce the overall production 
unless 7 > 2. The rotation term is normally absorbed into the curvature generation 
term (see for example, Zeman & Jensen 1987). In the above equations we have 
retained the terms involving V as we are not applying these equations strictly along 
streamlines, nor could we assume implicitly, as in many other curved flow 
investigations, that the streamlines are parallel to the profile of the hill. In  fact, the 
static pressure measurements across the boundary layer presented in BSJ 1 indicated 
that the streamlines were not parallel to the surface, especially in the regions of 
strong acceleration (concave bend and exit regions) and strong retardation (before 
separation point). 

There is no contribution to the shear stress generation from the extra strain rate 
due to pressure gradient in (2). The absence of the extra strain rate due to pressure 
gradient elsewhere in (2) suggests that the shear stress is not affected directly. If the 
mean momentum equation is used to form an equation for aU/an, it can be shown 
that away from the wall where viscous effects are small (outer region), aU/an cannot 
respond to changes in streamwise pressure gradient (Bradshaw & Ferris 1965). Since 
the primary production and generation terms in (1) and ( 2 )  contain aU/an, it follows 
that a sudden change in pressure gradient cannot also produce a change in ? and 
-m, except as far as the normal stress production term in (1) becomes important. 
It should be noted that by _ _  using the continuity equation the normal stress 
production can be written as (uz - v2) ( 1  + n/R) aV/an, and the effect of the streamwise 
pressure gradient can also be interpreted in terms of aV/an. The effect of aV/an is 
reported to be insignificant on boundary layers (Bradshaw 1973) even though its sign 
in free turbulent flows, according to Townsend (1961), distinguishes wakes and jets. 

The production terms in (1) and the generation terms in (2) are of the form 
(turbulent stress x rate of strain of mean flow). The ratio of curvature production to 
shear production in (1) is normally used as a measure of streamline curvature effect 
as it gives the ratio of the extra strain rate to the simple shear. When this measure 
is applied to the generation terms in (2), it shows that the generation of -m depends 
_ _  not only on the ratio of strain rates, but also on the anisotropy parameter, namely 
u2/v2 (see Hunt & Joubert 1979). Therefore, the behaviour o f?  is expected to be 
different from that of -m in a curved flow as far as 2 =k 7. Similarly, the effect of 
streamwise pressure gradient on ? in addition to the ratio of strain rates depends on 
the above ratio of the normal stresses as well as the shear stress covariance, 7/ -m. 
An alternative interpretation of the generation terms in (2) is achieved by rearranging 
the terms such that the leading-order contribution to the generation is proportional 
to the basic strain, (aU/an)- (U/R) .  By using R,, the ratio of the extra strain rate 

13-2 
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2U/R to the basic strain, this term becomes (7( 1 +Re) -?R,) [(aU/an) - ( U / R ) ] ,  
which again demonstrates the important role of the anisotropy parameter in 
determining the effects of curvature. 

Gibson & Rodi (1981) used a full Reynolds stress model based on (2) to calculate 
the curved mixing-layer flow studied by Castro & Bradshaw (1976), and found good 
agreement between experiment and calculation without modification to the basic 
closure hypotheses, and without changes in the basic constants. On the other hand, 
lower-order models, such as the one-equation model due to Bradshaw & Unsworth 
(1974), certainly require empirical curvature corrections to obtain reasonable 
agreement with experiment. For even a small extra strain rate, the changes in the 
Reynolds stresses was found to  be an order of magnitude larger than the ratio of the 
extra strain rate to  the mean shear. Most of the changes due to extra strain rates arise 
in terms which do not contain the extra strain rates explicitly, such as the diffusion 
and destruction terms. Gibson & Rodi emphasized that the correct modelling of the 
pressurestrain correlation was particularly important for the success of their 
calculation. Muck et aZ. (1985) added, ‘it may be advisable to model the effects of 
curvature solely in the Reynolds stress equations, a t  least partly as a dependence of 
the rapid part of the pressurestrain redistribution term in the Reynolds stress 
transport equation on a suitable dimensionless curvature parameter ’. The model of 
Zeman & Jensen (1987), used to  compare the present experimental results essentially 
incorporates such a mechanism, and their model for the full pressurestrain 
redistribution term is, 

-au - - u  
an R 

nu’ = - 0 . 6 ~ ~ - + 0 . 3 ( 2 ~ ~ -  w2) -- 3.256 (3) 

rapid part curvature part return-to-isotropy part 

3. Results and discussion 
Before discussing the results, the non-dimensionalization of flow variables needs 

some comment. All the velocities and the lengths are non-dimensionalized with 
respect to some fixed values, namely the reference velocity, Uref, and So, the 
boundary-layer thickness a t  the first measurement station (s = 596 mm), in order to  
observe the absolute changes due to streamline curvature and streamwise pressure 
gradient. Scaling with the local values such as the wall potential velocity, Up,, and 
the local boundary-layer thickness, 6, has the disadvantage of disguising the effects 
of the extra strain rates and may mislead interpretation. It is not our intention to  
derive any similarity laws in the present work. 

The profiles of? and -m over the curved hill are shown in figure 2. The profiles 
of F over the leading-edge plate ( s  < 897 mm) exhibit relatively little change. 
increases to  the concave bend only below n/6 = 0.5, against the expected increase 
due to the destabilizing curvature a t  a larger distance from the wall. At the exit, 
where the streamline curvature is inflexional, decreases to a level comparable to 
values over the leading-edge plate. The behaviour of turbulent kinetic energy over 
the prolonged region of convex curvature is closely similar to that of the individual 
normal stresses. Inside the internal boundary layer over the hill, all the stresses 
increase with downstream distance in the inner or wall region (figure 1)’ while they 
decrease in the outer region (refer to figure 29 in BSJl).  Unlike in the strongly curved 
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flows studied by earlier workers such as So & Mellor (1972)) Prabhu & Sundarasiva 
Rao (1981) and Gillis & Johnston (1983), the stresses in the external layer decrease 
only gradually with streamwise distance since there is an increase in their magnitudes 
in the concave bend. The profiles of -m demonstrate that shear stress decreases 
faster than the turbulent kinetic energy over the convex region especially in the 
external layer (see BSJl for a fuller discussion of the shear stress profiles). At  the last 
measurement station before the separation point, the shear stress even changes sign 
between n/S = 0.2 and n/S = 0.5 (negative values are not shown). 

The triple products of velocity _ - _ _  fluctuations, namely u3, u2v, uv2, v3, uw2, 
q2u ( = u3 + uw2 + uw2) - _  and f i  ( = u2w + v3 + w2w) are shown in figure 3. The quantity, 2)w2 
was inferred to be i(u2v + v3) following Bradshaw (1967). Details of the measurement 
techniques were already discussed in BSJl and will not be repeated here. The 
pressurevelocity correlations contained in (1) and (2) could not be measured. 
Dissipation in (1) and redistribution in (2) including the terms containing pressure 
fluctuations were obtained as the sum of other terms. 

The triple products increase significantly through the concave bend before 
encountering convex curvature, and therefore turbulent diffusion of and turbulent 
transport of -W are expected to be affected. The behaviour of the triple products 
over the convex surface clearly supports the existence of the internal and external 
layers over the hill through the presence of the knee points as already observed in the 
profiles of the Reynolds normal and shear stresses in BSJl. Within the internal 
boundary layer, the triple products maintain levels typical of the upstream 
boundary layer, whereas in the external layer the triple products monotonically 
attenuate to very low levels. The thickness of the internal layer, S,, and the external 
layer, S,( =S-6,), along with other flow parameters, which describe and govern the 
flow over the two-dimensional hill, are given in table I .  Note that the width of the 

- - - - -  
- - - -  
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s (mm) 
596 
710 
867 
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1139 
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1345 
1469 
1596 
1665 
1730 
1862 
1990 

CPW 
0.097 
0.148 
0.285 
0.364 
0.001 

-0.177 
-0.726 
- 1.014 
- 1.252 
- 1.132 
- 1.267 
-0.995 
-0.579 

c, x 103 

2.96 
2.81 
2.06 
2.41 
4.76 
5.08 
4.77 
4.28 
3.88 
3.29 
3.54 
2.69 
1.35 

K x los 
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0.28 
0.18 
0.05 

-0.19 
-0.30 
-0.77 

8 (mm) 
39.19 
43.08 
53.83 
64.54 
52.85 
53.12 
42.15 
44.08 
45.53 
47.93 
48.09 
54.03 
70.52 

- 

3.43 
2.66 
5.48 
6.39 
7.97 
9.11 
9.62 

12.7 
17.28 

- 

49.42 
47.46 
36.67 
37.69 
37.56 
38.82 
38.47 
41.33 
53.24 

TABLE 1. Flow parameters for the turbulent flow over the curved hill. Urer = 20.6+0.2 m/s, v = 
15.1 kO.1 x lo6 mz/s. K is a pressure gradient parameter (=  - (v/pUEW)dp/dr)). 

free external layer remains more or less constant almost until the region of separation 
is reached. 

In order to assess the significance of the prolonged streamline curvature and the 
acceleration effects on various regions of the hill, the ratios of the corresponding 
extra strain rates to the local mean shear are plotted in figure 4 along n/6  = 0.5 and 
n/6, = 1. In the concave bend, the modulus of the ratios of the above two extra strain 
rates to the local shear reach values as large as 0.2, implying significant changes in 
the flow owing to the dominance of the Reynolds stress gradients, while a t  the exit 
the extra strain rates exceed by far the basic shear, indicating a strong distortion of 
the turbulence structure. The applicability of even the fairly thin-shear-layer 
approximation is in doubt in these regions. In BSJ1, the behaviour of the normal 
stresses at the exit of the bend implied a change in the species of the turbulent flow 
structure, namely from an attached-boundary-layer structure to a free-shear-layer 
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FIGURE 5. (a) Turbulent kinetic energy balance at the foot of the hill (s = 897 mm). x , advection ; 
[I], shear production ; A, normal stress production ; 0, curvature production ; 0 ,  total production ; 
Z, turbulent diffusion; 0 ,  dissipation. (Terms non-dimensionalized by So, (6 at s = 596 mm) and 
qef.) (b) Primary shear stress balance at the foot of the hill (s = 897 mm). x , mean transport; 0,  
shear generation ; 0, curvature generation ; 0,  total generation ; 2, turbulent transport ; , 
pressurnstrain redistribution ; ---, Zeman & Jenson’s model for redistribution. (Terms non- 
dimensionalized by 6, and qe,.) ( c )  Profiles of anisotropy parameter, v2/u2, around concave bend. 
(Note the shift in the abscissa scale.) 

structure without flow separation. The ratios of the extra strain rates remain high in 
the isolated external layer, so that the behaviour of the turbulence structure is 
expected to follow that corresponding to decaying turbulence in a curved path, and 
one needs to distinguish between the genuine stabilizing curvature effects and the 
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shear stress balance in the concave bend (s = 1015 mm). For legend refer to figure 5 ( b ) .  
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FIGURE 7 .  (a) Turbulent kinetic energy balance at the exit (s = 1183 mm). (b) Primary shear 
stress balance at the exit (s = 1183 mm). For legend refer to figure 5 ( b ) .  

strong distortion that occurs when the extra strain rate overwhelms the basic shear. 
When the distortion is that strong, the turbulent stresses change necessarily as a 
result of direct changes in the inherent large eddy structure (distortion) rather than 
owing to the extra strain rate itself (Bradshaw 1973). In contrast, the internal 
boundary layer obeys the thin-shear-layer approximation as the extra strain rates 
are only about 0.01 of the local shear. 

3.1. Concave bend 
The terms in (1) and (2) in the region of the concave bend, namely at  entry (s = 
897 mm; also referred to as the foot of the hill), middle (s = 1015 mm) and exit (s = 
1183 mm) locations are shown in figures 5, 6 and 7 respectively (except figure 5 c ) .  It 
is interesting to note that the increase in a" occurs only below n/6 = 0.5 in the 
concave bend, while the increase in -GV occurs all across the layer (figure 2). One 
would normally expect also to increase significantly in the outer region under the 
influence of concave curvature. Apparently, this is due to the increase due to the 
curvature production being compensated by a decrease due to the normal stress 
production, as shown in figure 6 ( a ) ,  whereas the shear production increases only 
slightly between the entry and the concave bend, especially above n/6 = 0.2. In 
contrast, the gain due to curvature alone on -GV generation in the bend is almost 
as large as the shear generation at  the foot of the hill, especially in the outer region 
(n/6 > 0.2) as shown in figure 5 ( b ) .  This increase in generation is directly due to the 
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curvature extra strain rate, since the associated anisotropy parameter, u2/v2,  shown 
in figure 5 (c), decreases from a plateau value of 4 at the foot of the hill (s = 897 mm) 
to 2.5 in the concave bend (s = 1015 mm). Note that the shear production in (1)  and 
shear generation in (2) roughly change by the same amount in the bend, since both 
-m and 2 change by the same amount (figures 14(b) and 14(d)  in BSJl) while the 
basic shear, [1+ (n/R)] aU/an, remains nearly unchanged from that a t  the foot of the 
hill (figure 24 of BSJl). Another unexpected aspect of the flow behaviour in the 
concave bend is the imbalance between production and dissipation of the turbulent 
kinetic energy even in the inner region (n /6  < 0.2). Except very close to the wall (first 
three data points), the dissipation in the bend below n/S = 0.5 does not change from 
that a t  the foot of the hill, while outside this point dissipation decreases to negligibly 
small values. The excess of advection over diffusion outside n/S = 0.5 is consistent 
with the slight decrease in ? in the bend from its value at the foot of the hill. 
Advection is really the sum of all the other terms rather than a process in its own 
right. However, it is directly deduced from the measured data and used to derive 
values for dissipation. Note that the term deduced for dissipation in ( 1 )  contains the 
terms with unmeasurable pressure fluctuations. The imbalance implies the 
significance of pressure fluctuations in the bend, if we were to assume energy 
equilibrium (production = dissipation). This is plausible because the convergence of 
the streamlines in the plane of mean shear owing to the acceleration in the bend 
moves the energy containing motions towards the wall and hence there is likely to 
be an ‘image or wall constraint effect’ which could set up pressure fluctuations 
(Wood & Bradshaw 1984). In contrast, the redistribution balances the generation in 
the shear stress budget. This is only possible if the pressurevelocity correlation, p 
is a function of s only and im is a function of n only. It is not possible to check this 
inference from other experiments on flow through concave bends, such as that by 
Smits, Young & Bradshaw (1979), since no data were taken in the bend. The model 
of Zeman & Jensen, while predicting the redistribution at the foot of the hill 
reasonably well, underestimates the levels in the concave bend by a factor of about 
3. 

At the exit (s = 1183 mm), there is a large reduction in the total production and 
total generation even though both and -m at the exit are quite large ; ? recovers 
almost to the undisturbed values upstream with a slight reduction in the outer layer, 
and -m remains roughly as high as that in the concave bend with a decrease below 
n / S  = 0.4. This obviously results in the remaining terms, especially those responsible 
for diffusion and advection in ( 1 )  and mean transport and turbulent transport in (2), 
becoming at least as large as the source and sink terms. The reduction in total 
production and total generation is mainly due to significant reduction in the shear 
production and shear generation terms respectively, and should not be thought to be 
due to the influence of the streamline curvature, which has just changed sign a t  the 
exit. The reduction in shear production and shear generation, in turn is due to the 
reduction in the basic shear, since 3 continues to increase a t  the exit. Note that the 
normal stress production in (1) is negligibly small a t  the exit, even though the extra 
strain rate due to acceleration is large (0.6) relative to the basic shear strain. This is 
due to the associated amplification factor, namely (u2 - v2), being negligibly small. 
The curvature contribution to both production and generation remains roughly the 
same as that in the bend, but opposes the shear contribution consistently, as 
expected of convex curvature. The static pressure distributions across the layer a t  
the exit presented in BSJl suggest that the radius of curvature of streamlines is 
inflexional even though the surface curvature is convex. The diffusion term is 

_ _  

_ _  



A turbulent Jlow over a curved hill. Part 2 393 

V 

0 10 20 30 40 50 60 70 80 

n (mm) 
FIGURE 8. Prandtl's mixing length distributions around the concave bend. Foot of the hill: 0, 
897 mm ; concave bend : m, 1015 mm ; exit : V, 1183 mm ; consensus value in the outer region of 
flete plate boundary layer. 
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FIGURE 9. Dissipation lengthscale (F/E) distributions around the concave bend. (For symbols 
refer to figure 8.) 

approximately equal to the advection term below n/d = 0.5, while above this point 
diffusion balances dissipation, which has again become finite a t  the exit. In  contrast, 
mean transport is roughly equal to turbulent transport all across the layer. 
Interestingly, the values of the pressure-strain term at the exit reduce to less than 
half of those in the bend, similar to the behaviour of the generation term. This is due 
to the decrease in the basic strain rate at the exit and suggests the pressure-strain 
redistribution term is dominated by the rapid part. Unlike the situation in the 
concave bend, here the model of Zeman & Jensen (1987) gives amazingly good 
agreement with experimental data. 

The effect of curvature is also seen in the distribution of the lengthscales. Prandtl's 
mixing length, I,, and the dissipation lengthscale, L,( = (?):I€), are shown in figures 
8 and 9. Both lengthscales are equal to each other ifproduction = dissipation. Hence 
the difference in their magnitudes in the concave bend is due to lack of energy 
equilibrium. The increase in both lengthscales in the bend is consistent with the sense 
of curvature (destabilizing). However, the increase in the bend persists at  the exit 
demonstrating the lag effect to changes in the extra strain rate. The lag was found 
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FIQURE 10. (a) Turbulent energy balance in the internal boundary layer on the windward side 
(s = 1469 mm). For legend refer to figure 5(a ) .  (b) Primary shear stress balance in the internal 
boundary layer on the windward side (s = 1469 mm). For legend refer to figure 5 ( b ) .  

to be of the order of 106 as in the case of Smits et al. (1979). Using the analogy 
between buoyancy and curvature, Bradshaw (1969) proposed a correction for the 
basic flat-plate boundary-layer lengthscale, lo,  as a function of curvature Richardson 
number, Ri, so that 1/1, = 1 -&,, with 01 = 2 for concave curvature and a = 3 for 
convex curvature. Here Ri = 2S*/ ( l  +S*) ,  where S* is the ratio of curvature 
production to the shear production (figure 4), and it is also called the 'stability 
parameter'. [Note that Galperin & Mellor (1989) call R, the stability parameter 
where R, is defined by the ratio of the extra strains introduced by curvature to the 
basic mean strain, (aU/an-U/r) .  Thus, R, = 2S*/(1 -S*)  = RJ(1 -Ri) . ]  The two- 
fold increase in the mixing length in the bend with respect to that in the leading-edge 
flat-plate boundary layer is in agreement with that predicted by the above formula. 
The agreement for dissipation lengthscale is not so good if we have to use the above 
formula with the mixing length replaced by the dissipation lengthscale ; the increase 
relative to the flat plate value is three fold in the middle of the layer. The above 
formula is not applicable to the exit region since the fairly thin-shear-layer 
approximation is strongly violated there (figure 4). In  BSJ1, i t  was reported that the 
Reynolds stresses (velocity scales) changed all across the layer rather than changes 
being confined to the inner region as might be expected in pressure gradients. To the 
thin-shear-layer approximation, the effect of pressure gradients on the outer region 
lengthscales is usually negligible. When the thin-shear-layer approximation is 
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FIQURE 11. (a) Turbulent kinetic energy balance in the internal boundary layer at the summit 
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violated, we are not sure of the mechanism by which the acceleration influences the 
lengthscales. 

3.2. Internal boundary layer 
The energy and the shear stress budgets in the internal boundary layer are shown in 
figures 10, 11 and 12 for locations on the windward side, at the summit and for the 
leeward side, respectively. Note that no measurements were made in the wall or inner 
region of the internal boundary layer since this region is too small for the cross-wire 
probe to access. In BSJ1, pressure gradient effects were shown to dominate this inner 
region and therefore streamline curvature effects are expected to be important only 
away from the wall. However, both normal stress production and curvature 
production are negligible except close to the edge of the internal boundary layer, 
where shear production is also small. Nevertheless, the curvature contribution to the 
shear stress is identifiable as a small fraction of the total generation in the shear stress 
budget. The slight increase in the normal stress production is expected as the internal 
boundary layer approaches the separation point. The internal boundary layer is not 
in energy equilibrium since both turbulent diffusion and advection are significant in 
the outer region. The outer region gains energy and shear stress through turbulent 
diffusion and turbulent transport respectively as indicated by the positive sign of the 
- turbulence transport velocities V, and V,, shown in figure 13 (V, = &/q2, V,, = 
u v 2 / m ) .  The positive sign for the transport velocities in the external layer indicates 
there is no transfer of energy and shear stress from it into the internal layer. The 
pressure-strain redistribution due to Zeman & Jensen's model predicts the 
experimental observations fairly well (figure 12 b) . 

The mixing length distributions across the internal boundary layer are shown 
in figure 14. The stabilizing curvature reduces the lengthscale in the outer region 



398 V.  Baskaran, A .  J .  Smits and P .  N .  Joubert 

0.6 

0.4 

- 1, 
8” 

0.2 

X 

% X 

X 

t % 
5 5 5 

m X 

0 0.5 1 1.5 2 

n/8, 
FIQURE 14. Prandtl’s mixing length distributions in the internal boundary layer. Windward 

side: x , 1469 mm; summit: m , 1665 mm; lee side: 5 ,  1862 mm. 

-0.5 I I I I 
0 0.5 1 I .5 2 

n / &  

FIGURE 15. Profiles of the ‘stability’ parameter in the internal boundary layer. 
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(n/&, > 0.2) as expected. If the mixing length is non-dimensionalized with respect to 
a,, i t  can be seen that the distributions inside the internal boundary layer are 
approximately the same as that reported by Muck et al. (1985) in a mildly curved 
convex wall boundary layer, and the distribution is expected to follow 1 = Kn ( K  is the 
KBrman constant) close to the wall. The reduction in the lengthscale is only 
significant in the outer twenty per cent of the internal boundary layer, where the 
effects of curvature are expected to  be dominant. The correction to  the mixing length 
for convex curvature recommended by Bradshaw (1969) is 111, = 1 - 3Ri, where R, 
was deduced from the distribution of S* shown in figure 15. The magnitude of the 
mixing length is approximately the same as that given by Bradshaw’s correction. 
The magnitude of the stability parameter, S * ,  is less than 0.01 in the internal 
boundary layer, suggesting that the effect of streamline convex curvature is ‘mild’, 
and the thin-shear-layer approximation is obeyed. To this approximation, stream- 
wise pressure gradient is well known to affect the flow (momentum and 
turbulence) only in the inner region leaving the outer flow unaffected, as shown in 
BSJ1. In contrast, a mild streamline curvature affects the flow only at distances far 
away from the wall such as in the outer or wake region as shown above. [Gibson 
(1988) suggests that  the law of the wall for both velocity and temperature is modified 
by curvature. This is not found in the results presented in BSJl.] The influence of the 
two extra strain rates on these two regions (inner and outer) does not appear to 
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overlap in the present results. This suggests that the interaction between the 
streamwise pressure gradient and mild streamline curvature is weak under a thin- 
shear-layer approximation. 

3.3. External layer 
In BSJ1, it was shown that the external layer behaves as an isolated free turbulent 
flow. This view is further supported here by the observation that the total production 
and total generation terms are zero in the external layer (figures 10, 11 and 12), and 
therefore the decay of turbulence with downstream distance is expected to be 
hastened by convex streamline curvature. Note that the rate of decrease of? with 
streamwise distance is slower than that of -TIT (figure 2). The terms in (1) and (2) in 
the middle of the external layer, $(a-a,), are given as a function of streamwise dis- 
tance in figure 16. The middle of the external layer corresponds approximately to  the 
point where the triple product profiles in the external layer have maxima. The loss of 
energy and shear stress due to the curvature terms is significant because they oppose 
the shear terms initially. After about eight boundary-layer thicknesses downstream 
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of the exit, the curvature and shear terms are of the same order. The acceleration 
does not directly contribute to the downstream decay of the energy since the normal 
stress production is negligibly small. Note that in the presence of curvature the 
turbulent diffusion and the turbulent transport processes rapidly fall to zero. This 
finding supports the earlier work by Muck et al. (1985), Ramaprian & Shivaprasad 
(1978), and Gibson et al. (1984) on the inhibiting effect of convex curvature on 
transport processes. This effect is also clearly evident from the profiles of transport 
velocities of?  and -WU given in figure 13. The role of curvature on the shear stress 
decay can be clearly seen as the curvature generation term opposes the shear 
generation term and hence the total generation. The decay of the redistribution 
terms is correctly predicted by the hill-flow model of Zeman & Jensen (1987). 
Turbulent transport terms respond more quickly than the other terms. Gillis & 
Johnston (1983) found their zero pressure gradient curved external layer (the region 
between - -  the knee point and the local free stream) to be isotropic in character, i.e. 
2 = v 2  = w2 and -m = 0. However, when streamwise pressure gradients are present 
such as in the present case, the external flow tends to become more and more 
anisotropic, as shown in figure 17. The declining trend in the plateau level of the 
anisotropy ratio suggest that ;;" decays faster than 2. 

4. Conclusions 
The experimental results obtained in a turbulent flow over a curved hill described 

by BSJl are analysed in terms of the transport equations for the turbulent kinetic 
energy and the primary shear stress. The influence of streamline curvature and 
streamwise pressure gradients are recognized through certain terms containing the 
respective extra strain rates in the transport equations. The source terms due to 
streamline curvature relative to that due to basic shear imply that _ _  the behaviour of 
the primary shear stress depends on the anisotropy parameter, uz /v2  as well as the 
curvature extra strain rate. Streamwise pressure gradient does not appear to affect 
the shear stress directly, while its influence on the turbulent kinetic energy arises 
through the normal stress production term containing the extra strain rate due to 
acceleration. 

The profiles of the triple products presented in this paper exhibit ' knee ' points and 



A turbulent jlow over a curved hill. Part 2 40 1 

this is consistent with the fact established in Part 1 that the upwind boundary-layer 
structure bifurcates into an internal boundary layer and an external free turbulent 
flow. Both production of turbulent kinetic energy and generation of shear stress are 
zero in the external layer supporting the description of the external turbulent flow 
as being an ‘ isolated ’ or ‘ free ’. 

The extra strain rates due to concave streamline curvature and a favourable 
streamwise pressure gradient attain values which are about 20 % of basic shear in the 
bend. Consequently, even the fairly thin-shear-layer approximation breaks down. 
The profiles of turbulent kinetic energy exhibit little change in the outer layer as 
against the expected increase due to the destabilizing streamline curvature. This is 
due to the interaction between the streamwise pressure gradient and streamline 
curvature, in that the significant size of the normal stress production term 
counteracts the curvature production. In contrast, curvature-induced generation of 
shear stress augments the total generation. The increase in shear stress in the bend 
is genuinely due to the curvature extra strain rate since in the bend the anisotropy 
parameter decreases from its upstream level. The condition of energy equilibrium in 
the concave bend implies that the pressure fluctuations are significant. The 
lengthscales were found to increase under the influence of concave streamline 
curvature. 

At the exit, the extra strain rates overwhelm the basic shear and as a result, even 
the fairly thin-shear-layer approximation breaks down. Both total production and 
total generation decrease greatly owing to a decrease in the basic strain rate rather 
than the curvature and pressure gradient extra strain rates. The pressure-strain 
redistribution term behaves in a similar manner to the generation term suggesting 
that the mean strain-rate dependent rapid part plays a major role. 

In the region of prolonged convex curvature, the ratios of the extra strain rates to 
basic shear are about 0.01 suggesting a mild influence of streamline curvature and 
streamwise pressure gradient, and the internal boundary layer satisfies the thin- 
shear-layer approximation. The changes observed in the turbulence in the inner and 
outer regions of the internal boundary layer are found to be consistent with that 
expected of streamwise pressure gradient and convex streamline curvature, 
respectively. This in turn suggests that the interaction between the streamwise 
pressure gradient and streamline curvature is weak inside the internal boundary 
layer. Reduction of lengthscales owing to convex curvature was observed. 

In the external layer, where the source terms of the transport equations are zero, 
turbulent diffusion of turbulent kinetic energy and turbulent transport of the shear 
stress were found to decrease under the influence of convex curvature. The 
turbulence in the external layer was found to be anisotropic, unlike the isotropic 
character observed by Gillis & Johnston (1983), in their curved external flow with 
zero pressure gradient. The pressure-strain redistribution term inferred from the 
present experimental data was found to agree well with the model of Zeman & Jensen 
(1987) everywhere, except in the concave bend. The changes in Prandtl’s mixing 
length are well predicted by the simple formula of Bradshaw (1969) in the hill flow. 
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